LECTURE 10-HYDRAULIC MOTORS

SELF EVALUATION QUESTIONS AND ANSWERS

- 1.A rotary vane motor has a displacement volume of 80cm³/rev and operate at 1750rpm. The system pressure is 7 bar. Calculate the flow rate and the kW power output of the motor.
- 2.A hydraulic motor has a volumetric displacement of 125 cm^3 and a pressure rating of 150 bars. It receives a theoretical flow of oil of $0.0015 \text{ m}^3/\text{s}$ from a pump. Find the motor: a) Speed b) theoretical torque c) theoretical power.
- 3.A hydraulic motor has a displacement of $150~cm^3$ and operates with a pressure of 120 bars and a speed of 2500~rpm. The actual flow rate consumed by the motor is $0.0078~m^3/s$ and the actual torque delivered by the motor is 250~Nm. Find
- a. Volumetric efficiency
- b. Mechanical efficiency
- c. Overall efficiency
- d. Power delivered by the motor
- 4.A motor has a displacement 300 cm³ and a speed of 200 rpm with a pressure drop of 200 bar. The volumetric efficiency is 90% and the mechanical efficiency is 95%. Determine theoretical and actual a. Discharge b. Torque c.Power
- 5.A hydraulic motor with a displacement of 475 is used to directly drive a conveyor drum having a diameter of 0.7m. The pressure drop over the motor is 140 bar and the actual flow into the motor is 48 l/min. The overall and mechanical efficiency of the motor are 0.9 and 0.94 respectively. Determine
- a. the torque at the conveyor drum
- b. the power in kW supplied to the conveyor drum
- c. the linear speed of the conveyor belt

Q1Solution

$$V_{\rm d} = 80 \frac{cm^3}{rev} = 80 \times 10^{-6} \frac{m^3}{rev}$$

$$N = 1750 RPM$$

$$P = 7bar = 7 \times 10^5 \frac{N}{m^2}$$

Flow rate

$$Q = V_{\rm d} \times N = 80 \times 10^{-6} = 0.14 \, m^3/min$$

$$Q = 2.333 LPS$$

Power output in kW

$$P_0 = P \times Q = 700 \times 2.333 \times 10^{-3} = 1.6331kW$$

Q2Solution

Theoretical flow rate $Q_T = 0.0015 \text{ m}^3/\text{s}$

Displacement of motor $D_m = 125cm^3$

$$= 125 \times 10^{-3} \text{m}^3$$

Pressure rating $P_m = 150$ bars

$$= 150 \times 10^5 \text{ N/m}^3$$

a. The motor speed
$$N = \frac{Q_T}{D_m} = \frac{0.0015}{125 \times 10^{-6}}$$

$$= 12 \text{ rev/s}$$

$$= 12 \times 60 = 720 \text{ rev/min}$$

b. Theoretical torque =
$$\frac{P_m D_m}{2\pi} = \frac{150 \times 10^5 \times 125 \times 10^{-6}}{2\pi}$$

c. Theoretical power =
$$P_m Q_T = 150 \times 10^5 \times 0.0015$$

$$= 22500 W$$

Q3Solution

Displacement of motor $D_m = 150 \text{ cm}^3$

$$= 150 \times 10^{-6} \text{ cm}^3$$

Pressure
$$P_m = 120$$
 bar

$$= 120 \times 10^5 \text{N/m}^2$$

a. Volumetric efficiency $\eta_{\nu}=\frac{Q_T}{Q_A}\times 100$ $=\frac{(D_mN)/60}{Q_A}\times 100$ $=\frac{150\times 10^{-6}\times 2500}{0.00781\times 60}\times 100$

b. Mechanical efficiency $\eta_m = \frac{T_A \times 2\pi}{P_m D_m} \times 100$

$$=\frac{250\times 2\pi}{120\times 10^5\times 150\times 10^{-6}}\times 100$$

c. Overall efficiency $\eta_o = \eta_{\nu} \times \eta_m$

$$= 0.8 \times 0.87 \times 100$$

d. Power delivered by the motor = $2\pi NT/60$

$$=\frac{2\pi\times2500\times100}{60}$$

Q4Solution

Displacement of motor
$$D_m = 300 \text{ cm}^3$$

$$=300 \times 10^{-6} \text{m}^3$$

Speed of the motor N = 200 rpm

Pressure drop =
$$200 \text{ bar}$$

$$= 200 \times 10^5 \text{ N/m}^2$$

Volumetric efficiency $\eta_v = 90\%$

$$= 0.9$$

Mechanical efficiency $\eta_m = 95\%$

$$= 0.95$$

a. Theoretical discharge $Q_T = D_m$.N

$$=300 \times 10^{-6} \times 200$$

$$= 0.06 \text{ m}^3/\text{min}$$

Actual discharge =
$$\frac{Q_T}{\eta_v}$$

$$=\frac{0.06}{0.9}$$

= 0.0667

b. Theoretical torque $T_T = \frac{P_m D_m}{2\pi}$

$$=\frac{200\times10^{5}\times300\times10^{-6}}{2\pi}$$

= 955 Nm

Actual torque $T_A = T_T x \eta_m$

$$= 955 \times 0.95$$

= 907.3 Nm

c. Theoretical power the motor should deliver = $\frac{P_m Q_T}{60}$

$$=\frac{200\times10^{5}\times.06}{60}$$

$$=20 \text{ kW}$$

Actual power delivered by the motor = 20×0.95

= 19 Kw

Q5Solution

The pressure drop over the motor P_m = 140 bar

$$= 140 \times 10^5 \,\text{N/m}^2$$

Displacement of motor $D_m = 475 \text{ cm}^3/\text{rev}$

$$= 475 \times 10^{-6} \text{ m}^3/\text{rev}$$

Actual flow into the motor $Q_A = 48 \text{ lit/min}$

$$=48 \times 10^{-3} \text{ m}^3/\text{min}$$

Mechanical efficiency $\eta_m = 0.94$

Overall efficiency $\eta_o = 0.9$

a. Mechanical efficiency
$$\eta_m = \frac{2\pi T}{P_m D_m}$$

The torque at the conveyor drum T = $\frac{P_m D_m}{2\pi}$ x η_m

$$=\frac{140\times10^{5}\times475\times10^{-6}\times.94}{2\pi}$$

= 995 Nm

b. Overall efficiency =
$$\frac{2\pi N T}{P_m Q_A}$$

Power supplied by the motor to the conveyor drum = $P_m Q_A \eta_o$

$$= \frac{140 \times 10^5 \times 48 \times 10^{-3} \times .9}{60 \times 1000}$$

= 10.1 kW

c. Power =
$$\frac{2\pi N T}{60 \times 1000}$$

Speed of the hydraulic motor,

$$N = \frac{10.1 \times 60 \times 1000}{2\pi \times 995}$$

Linear speed of the conveyor = $\pi D n = \pi \times 0.7 \times 97 = 213 m/min$